
ICS 104 - Introduction to Programming in Python and CICS 104 - Introduction to Programming in Python and C

FunctionsFunctions

Reading AssignmentReading Assignment
Chapter 5 Sections 1, 2, 3, 4, 5 and 8.

Chapter Learning OutcomesChapter Learning Outcomes
At the end of this chapter, you will be able toAt the end of this chapter, you will be able to

implement functions
become familiar with the concept of parameter passing
develop strategies for decomposing complex tasks into simpler ones
determine the scope of a variable

Functions as Black BoxesFunctions as Black Boxes
A **function** is a sequence of instructions with a name.

For example, the **round** function, contains instructions to round a �oating point
value to a speci�ed number of decimal places.
You **call** a function in order to execute its instruction.

In []: price = round(6.8275,2) # Sets results to 6.83
print("Price:",price)

Functions as Black BoxesFunctions as Black Boxes
By using the expression **round(6.8275,2)**, your program **calls** the **round**
function, asking it to round 6.8275 to two decimal digits.
The instructions of the round function execute and compute the result.
The round function returns its result back to where the function was called and
your program resumes execution

Functions as Black BoxesFunctions as Black Boxes

Functions as Black BoxesFunctions as Black Boxes
When another function calls the round function, it provides **“inputs”**, such as the
values 6.8275 and 2 in the call round(6.8275, 2).
These values are called the **arguments** of the function call.

Note that they are not necessarily inputs provided by a human user.
They are simply the values for which we want the function to compute a
result.

The **“output”** that the round function computes is called the **return value**.

Functions as Black BoxesFunctions as Black Boxes
Functions can receive multiple arguments, but they return only one value.
It is also possible to have functions with no arguments.
An example is the **random** function that requires no argument to produce a
random number

At this point, you may wonder how the round function performs its job.
How does round compute that 6.8275 rounded to two decimal digits is 6.83?

In []: price = round(6.8275,2)
print("Price:",price)

Functions as Black BoxesFunctions as Black Boxes
Fortunately, as a user of the function, you do not need to know how the function is
implemented.

You just need to know the speci�cation of the function:
If you provide arguments x and n, the function returns x rounded to n
decimal digits.

We can think of round as a black box.

Functions as Black BoxesFunctions as Black Boxes
When you design your own functions, you will want to make them appear as black
boxes to other programmers.
Those programmers want to use your functions without knowing what goes on
inside.
Even if you are the only person working on a program, making each function into a
black box pays off: there are fewer details that you need to keep in mind.

Implementing and Testing FunctionsImplementing and Testing Functions

Implementing a FunctionImplementing a Function
When de�ning a **function**, you provide a **name** for the function and a
variable for each **argument**.

Let us start with a very simple example:
a function to compute the volume of a cube with a given side length.

Implementing and Testing FunctionsImplementing and Testing Functions
When writing this function, you need to

Pick a **name** for the function (cubeVolume)
De�ne a variable for each **argument** (sideLength). These variables are
called the **parameter variables**.

Put all this information together along with the **def** reserved word to form the
�rst line of the function's de�nition:

def cubeVolume(sideLength):

In []: def cubeVolume(sideLength):
 volume = sideLength ** 3
 return volume

This line is called the **header** of the function.
Next, specify the **body** of the function.

The body contains the statements that are executed when the function is
called.

In order to return the result of the function, use the **return** statement:
return volume

Implementing and Testing FunctionsImplementing and Testing Functions

Implementing and Testing FunctionsImplementing and Testing Functions

Testing a FunctionTesting a Function
In order to test the function, your program should contain:

The de�nition of the function.
Statements that call the function and print the result.

In []: def cubeVolume(sideLength):
 volume = sideLength ** 3
 return volume
result1 = cubeVolume(2)
result2 = cubeVolume(10)
print("A cube with side length 2 has volume", result1)
print("A cube with side length 10 has volume", result2)

Implementing and Testing FunctionsImplementing and Testing Functions

Programs that Contain FunctionsPrograms that Contain Functions
When you write a program that contains one or more functions, you need to pay
attention to the order of the function de�nitions and statements in the program.
As the Python interpreter reads the source code, it reads each function de�nition
and each statement.

The statements in a function de�nition are not executed until the function
is called.
Any statement not in a function de�nition, on the other hand, is executed
as it is encountered.

Therefore, it is important that you de�ne each function before you call it.

Implementing and Testing FunctionsImplementing and Testing Functions

Implementing and Testing FunctionsImplementing and Testing Functions
In []: # This program computes the volumes of two cubes.

def main() :
 result1 = cubeVolume(2)
 result2 = cubeVolume(10)
 print("A cube with side length 2 has volume", result1)
 print("A cube with side length 10 has volume", result2)

Computes the volume of a cube.
@param sideLength the length of a side of the cube
@return the volume of the cube

def cubeVolume(sideLength) :
 volume = sideLength ** 3
 return volume

Start the program.
main()

Implementing and Testing FunctionsImplementing and Testing Functions

Student ActivityStudent Activity
De�ne a function squareArea that computes the area of a square of a given side
length.

In []:

Parameter PassingParameter Passing
When a function is called, variables are created for receiving the function’s
arguments.
These variables are called **parameter variables**.

(Another commonly used term is **formal parameters**.)
The values that are supplied to the function when it is called are the **arguments**
of the call.

(These values are also commonly called the **actual parameters**.)

Parameter PassingParameter Passing
In []: # This program computes the volumes of two cubes.

def main() :
 result1 = cubeVolume(2)
 result2 = cubeVolume(10)
 print("A cube with side length 2 has volume", result1)
 print("A cube with side length 10 has volume", result2)

Computes the volume of a cube.
@param sideLength the length of a side of the cube
@return the volume of the cube

def cubeVolume(sideLength) :
 volume = sideLength ** 3
 return volume

Start the program.
main()

The parameter variable **sideLength** of the **cubeVolume** function is created
when the function is called.

The parameter variable is initialized with the value of the argument that was passed
in the call. In our case, **sideLength** is set to 2.

The function computes the expression **sideLength ** 3**, which has the value 8.
That value is stored in the variable **volume**.

The function returns. All of its variables are removed.
The return value is transferred to the **caller**, that is, the function calling the
cubeVolume function.
The caller puts the return value in the **result1** variable.

Parameter PassingParameter Passing

Student ActivityStudent Activity
What does this program print? Use a diagram to �nd the answer.

In []: def main():
 a = 5
 b = 7
 print(mystery(a,b))
def mystery(x,y):
 z = x + y
 z = z / 2.0
 return z
main()

Return ValuesReturn Values
The **return** statement terminates a function call and yields the function result.
In the preceding examples, each **return** statement returned a variable.

However, the **return** statement can return the value of any expression.
Instead of saving the return value in a variable and returning the variable, it is often
possible to eliminate the variable and return the value of a more complex
expression:

In []: def cubeVolume(sideLength):
 return sideLength ** 3

When the **return** statement is processed, the function exits **immediately**.

Return ValuesReturn Values
Some programmers �nd this behavior convenient for handling exceptional cases at
the beginning of the function:

In []: def cubeVolume(sideLength):
 if sidelength < 0:
 return 0
 # Handle the regular case.

Return ValuesReturn Values
Some programmers dislike the use of multiple **return** statements in a function.
You can avoid multiple returns by storing the function result in a variable that you
return in the last statement of the function.
For example:

In []: def cubeVolume(sideLength):
 if sideLength >= 0:
 volume = sideLength ** 3
 else:
 volume = 0
 return volume

Return ValuesReturn Values

Student ActivityStudent Activity
What does this function do?

In []: def mystery(n):
 if n % 2 == 0:
 return True
 else:
 return False

Functions Without Return ValuesFunctions Without Return Values
Some functions may not return a value, but they can produce output.

Sometimes, you need to carry out a sequence of instructions that does not yield a
value.
If that instruction sequence occurs multiple times, you will want to package it into a
function.

Functions Without Return ValuesFunctions Without Return Values
Here is a typical example: Your task is to print a string in a box, like this:

In []: ## Prints a string in a box.
@param contents the string to enclose in a box

def boxString(contents):
 n = len(contents)
 if n == 0:
 return #Return immediately
 print("-"*(n+2))
 print("!"+contents+"!")
 print("-"*(n+2))

def main():
 boxString("Hello")
main()

Student ActivityStudent Activity
What is wrong with the following statement?

In []: print(boxString("Hello"))

Variable ScopeVariable Scope
As your programs get larger and contain more variables, you may encounter
problems where you cannot access a variable that is de�ned in a different part of
your program, or where two variable de�nitions con�ict with each other.
In order to resolve these problems, you need to be familiar with the concept of
variable scope.

The **scope** of a variable is the part of the program in which you can access it.

Variable ScopeVariable Scope
In the following code segment, the **scope** of the parameter variable
sideLength is the entire **cubeVolume** function but **not** the **main**
function.

Variable ScopeVariable Scope
A variable that is de�ned within a function is called a **local variable**.
When a local variable is de�ned in a block, it becomes available from that point until
the end of the function in which it is de�ned.

For example, in the code segment below, the scope of the square variable is
highlighted.

In []: def main() :
 sum = 0
 for i in range(11) :
 square = i * i
 sum = sum + square
 print(square,sum)

main()

Variable ScopeVariable Scope

In []: def main() :
 sideLength = 10
 result = cubeVolume()
 print(result)

def cubeVolume() :
 return sideLength **3

main()

Note the scope of the variable **sideLength**.
The **cubeVolume** function attempts to read the variable, but it cannot;

The scope of **sideLength** does not extend outside the **main** function.

Variable ScopeVariable Scope
It is possible to use the variable name more than once in a program.
For example,

In []: def main() :
 result = square(3) + square(4)
 print(result)

def square(n) :
 result = n * n
 return result

main()

Each **result** variable is de�ned in a separate function, and their scope do not
overlap.

Variable ScopeVariable Scope
Any variable that is de�ned outside a function is a **global variable**.
A **global variable** is visible to all functions de�ned after it.

i.e., you can get the value of the variable.
However, any function that wishes to update a **global variable** must include a
global declaration:

In []: balance = 1000 # A global varaible

def withdraw(amount) :
global balance # This function intends to update the global balance variable
 if balance >= amount:
 balance = balance - amount

withdraw(200)
print(balance)

In []: balance = 1000 # A global varaible

def withdraw(amount) :
global balance # This function intends to update the global balance variable
 if balance >= amount:
 newBalance = balance - amount
 print("New Balance =", newBalance)

withdraw(200)
print("Current value of balance =", balance)

If you omit the **global** declaration, then the balance variable inside the
withdraw function is considered a local variable.

Generally, global variables are not a good idea.
When multiple functions update global variables, the result can be dif�cult to
predict.
Particularly in larger programs developed by multiple programmers, it is important
that the effect of each function be clear and easy to understand.
You should avoid global variables in your programs.

SummarySummary
A function is a named sequence of instructions.
Arguments are supplied when a function is called.
The return value is the result that the function computes.
When declaring a function, you provide a name for the function and a variable for
each argument.
Function comments explain the purpose of the function, the meaning of the
parameters and return values, as well as any special requirements.
Parameter variables hold the arguments supplied in the function call.

SummarySummary
The return statement terminates a function call and yields the function result.

Complete computations that can be reused into functions.
Use the process of stepwise re�nement to decompose complex tasks into simpler
ones.

When you discover that you need a function, write a description of the
parameter variables and return values.
A function may require simpler functions to carry out its work.

SummarySummary
The scope of a variable is the part of the program in which the variable is visible.

Two local or parameter variables can have the same name, provided that
their scope do not overlap.
You can use the same variable name within different functions since their
scope does not overlap.
Local variable declared inside a function are not visible to code inside
other functions.

